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Essay Objectives 

The essay objectives are a) to review the methods to obtain sample size in multiple regression and b) to 

evaluate the impact of the degree of association among the explanatory variables on the sample size, N. 

R  code was developed to realize it for linear, logistics and cox regression. 

Introduction 

Obtaining sample size is part any experiment design. It   should help investigators to establish how large 

a sample to select from a population based on statistical information and practical considerations. 

Geva(2004)1 provided a friendly discussion on the practical and statistical considerations  for selecting 

sample size. Practical considerations includes; budget constraints, patients availability  and clinical—

important-effect-size, while the statistical  considerations includes: power, significance level and effect 

size.  Sample and size and power analysis are closely related and often, in the literature the two terms 

are mixed. The main elements impacting sample size are: 

 

1. Sample Size --- noted by N 

2. Effect Size --- noted by ES and it is usually  fraction  such as   

3. Significance level = P(Type I error) = probability of finding an effect that is not there noted by α 

4. Power = 1 - P(Type II error) = probability of finding an effect that is there, noted by 1-β 

The following four quantities have close relationship, so, given any three, we can determine the fourth. 

Often time, in the planning stage of a study, the researcher is seeking for the statistical power  given the 

other three factors (i.e. sample size, significance level, and effect size). Therefore, from historical point 

of view, this was also referred as “power analysis”.  

Two groups comparison in randomized clinical trials is considered the simplest case. In this case, sample 

size is computed by first specifying the significance level and power, customary set at 5% significance 

and 80% power, and then specifying the effect size. Effect size reflects the anticipated clinical change 

and it is usually driven from publications or a pilot study. The assumed effect size can varied by the 

different sources and this leads researchers to conduct sensitivity analysis to explore sample-size 

estimate as a function of the assumed effect-size.  
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Sometimes, when a study failed to show significance, it is argued that sample size was too small or 

power too low. This argument has been challenged by statisticians recognizing that the retrospective 

power of a study is 1 if the test was significant, 0 if the tests failed.  Since retrospective power 

calculations are defined based on the observed effect size  from the test just performed, thus it 

becomes a useless exercise, see  "The Abuse of Power: The Pervasive Fallacy of Power Calculations” by 

Hoenig and Heisey (2001)2. 

Nevertheless, in a well design two groups clinical trial using 2-groups t-test for means or proportions the 

issue of sample size is straight forward, and sample size tables and formulas are available in most basic 

statistical text books, for example se Chow or ZAR3,4 . 

For power analysis or sample sizing the web offers numerous sample size calculators, many of which are 

free. Shiboski5   provides a comprehensive listing of power and sample size programs updated to 2006.   

Piface, WINPEPI and PASS are just a few of the popular calculators that we have described below: 

Piface6 is a very simple and easy to use such program is, which is a Java applet for power and sample 

size. It is intended to be useful in planning studies and selection of the plan statistical test by the user. 

Each selection has a nice graphical interface for studying the power or sample size of that test.  In Piface, 

each dialog window also offers a useful help menu. 

WINPEPI7 (PEPI-for-Windows)  is a simple programs, easy to use calculators for basic statistical tools for 

computing effect-size, p-values, confidence intervals, power and  sample size. It is most popular among 

epidemiologist and it is often used at the study design stage.  

PASS8 software is a commercialize program design to provide a research tool for determining the 

number of subjects that should be used in a study. It is one of the leaders in sample size technology; 

PASS performs power analysis and calculates sample sizes for over 230 statistical tests and confidence 

intervals, and as such it is also suitable also for regulatory submissions.  

 

In epidemiological studies, usually number of covariates are considered in a multi-variable statistical 

model.  Sample size and power analysis in this situation becomes more difficult because a) it is 

necessary to accommodate for the interplay (or correlation) among the variables and also b) there are a 

multitude of hypotheses being tested regarding the effect-sizes of each variable and the interaction 

between variables. This complexity led to the establishment of  “workable” rules-of-thumb in the 

selection of sample size for epidemiological studies using regression analysis.  For example,  select 10 or 

30  cases per explanatory variable or per event9-12 .  
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Moreover, multicolinearity defined as high correlation among the regression explanatory variables 

(covariates) and  cause numerical deviations in regressions’ parameter estimates and therefore 

O’Brian(2007) 13 noted that due to Variance Inflated Factor(VIF) or Tolerance, many researchers restricts 

the regression model with 10 explanatory variables. However the issue of VIF do not relates to sample 

size or power per se, and will not be addressed in this essay.  

 

 In linear multiple regression analysis the effect size depends on the multiple correlation among the 

explanatory variables were higher correlation requires smaller sample size to achieve the same 

statistical power.  The case is different in logistic  or Cox’s regression because sample size depends on 

the rate of events in the population, in addition to the multiple correlation among the explanatory 

variables, resulting in a complex data structure.  In this cases, sample size calculations are often 

accompanied by sensitivity analysis to understand the implication of  data structure on the required 

sample size.  Given this complexity in obtaining sample size for multiple regressions, several simplified 

formulas have been proposed in the literature.   

 

The aims of this paper is to provide a review of sample size determination formulas for multiple 

regression models including:  

i)Linear, ii)Logistic and iii) Cox regressions and to demonstrate how these can be realized to obtain 

tabulated and graphical sensitivity analysis to a range of assumptions, using R program. 

R provides a valuable platform to conduct simulation for sensitivity analysis in the multivariate setting, 

and thus the models presented in this essay could be customized to variety of generalized linear models.  

 

1. Sample Size considerations for Linear Regression: 

In multiple linear regression the set of explanatory variables are regressed on a single continues 

outcome variable represented by the following formula: 

, 

 

Where y i is the outcome variable and x1i,x2 i …xk i are the k explanatory variables which may be 

categorical or continues, not necessarily from a known distribution.  i represents the index of the i th 

individual  out of a sample size of N cases and   represents the individual deviation from the 
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regression curve.    is the outcome variable and it is assumed that the expectation of the outcome 

variable given all the explanatory variables is normally distributed such that: 

 

 

 

Sample size in multiple regression analysis is usually derived by power analysis using formula suggested 

by Cohen (1988)14 . For this purpose it is required to specify the anticipated effect size as defined by the 

regression multiple R2. 

The R package pwr developed by Stéphane Champely15   provides power calculations for t-test and for 

linear models -multiple regressions with the use of the function:   

pwr.f2.test(u =, v = , f2 = , sig.level = , power = ) 
 

Where u and v are the numerator and denominator degrees of freedom and  f2 is the effect size 

measured. The sample size is derived from the total degree of freedoms that is v+u. 

There are 3 ways to define the effect size: 

 

1-         where  R2 is the  population squared multiple correlation in the regression. 

 

2-      where   is the population variance accounted by variable set A, and  

is the population variance account by variable sets A and set B together. Use this to  test for 

variable set A control for variables in set B. 

 

3-    where R2 is the population variance accounted by variable of interest-X1, and  

is the  variance  of of X1  regressed over variable set K .  

The first formula is appropriate when we are evaluating the impact of a set of predictors on an outcome. 

The second formula is appropriate when we are evaluating the impact of one set of predictors above 
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and beyond a second set of predictors (or covariates).  Finally, the third   option is for the interest of 1 

variable with additional k cofactors. Cohen14 suggests that f2 values of 0.02, 0.15, and 0.35 represent 

small, medium, and large effect sizes. Notice that the total number of variables in the regression is only 

specified through the numerator degrees of freedom u and the sample size is the total of u+v.  Below  is 

an example of sample size table and graph using the pwr R package under the following specifications;  

R2  range of (0.05-0.95) with 5-25 variables;  significance and statistical-power are set to customary 

values of α=0.05 and 1-β=0.80. 

 

We have used the following code chunk 1 to obtain sample size tables and graphs presented below.  

Code 1.  Sample size for multiple regressions according to Cohen 1988 formula with a range of 
R2 and number of variables using R. 
 

#################################################################### 
# Sample Size and Power analysis Multiple Regression 
# Cohen 1988 Statistical power analysis for the behavioral sciences 
##################################################################### 
install.packages("pwr") 
library(pwr) 
 
## Exercise 9.1 P. 424 from Cohen (1988)  
pwr.f2.test(u=1,v=NULL,f2=0.1/(1-0.1),sig.level=0.05,power=0.8)$v+1 
 
## sample size for 10 variables in a range of R2 
R2<-seq(0.05,0.95,0.05) 
Nx<-seq(1,19,1) 
nvars<-10 
 for(i in 1:19){ 
    N10[i]<-pwr.f2.test(u=nvars ,v=NULL,f2=R2[i]/(1-R2[i]), 
            sig.level=0.05,power=0.8)$v+nvars   } 
cbind(R2,N210=ceiling(N10)) 
 
## sample size for 5-25 variables in a range of R2  
## using function Nx 
## obtaining table 1.a and figure 1.a 
 
Nx<-function(nvars,R2,alpha=0.05,pwr=0.8){ 
  ceiling( 
  pwr.f2.test(u=nvars-1,v=NULL,f2=R2/(1-R2),sig.level=alpha,power=pwr)$v+nvars  
  )} 
## applying function Nx 
R2<-seq(0.05,0.95,0.05) 
N25<-N20<-N15<-N10<-N5<-seq(1,19,1) 
 
for(i in 1:19){ 
  N25[i]<-Nx(nvars=25,R2=R2[i],alpha=0.05,pwr=0.8) 
  N20[i]<-Nx(nvars=20,R2=R2[i],alpha=0.05,pwr=0.8) 
  N15[i]<-Nx(nvars=15,R2=R2[i],alpha=0.05,pwr=0.8) 
  N10[i]<-Nx(nvars=10,R2=R2[i],alpha=0.05,pwr=0.8) 
  N5[i]<-Nx(nvars=5,R2=R2[i],alpha=0.05,pwr=0.8) 
} 
## generating table and plots 
Tab1.a<-as.data.frame(cbind(R2,N25,N20,N15,N10,N5)) 
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colnames(Tab1.a)<-c("   R2","Nvars=25","Nvars=20","Nvars=15","Nvars=10","Nvars=5") 
Tab1.a 

 
plot(R2,N25,ty="l",col=4,ylab="Sample Size",  
     main="Multiple linear Regression sample size by R2 for K Variables",  
     xlim=c(0,1), ylim=c(0,450),cex=0.8,cex.main=0.8,cex.sub=0.6, 
     cex.axis=0.8,cex.lab=0.8) 
lines(R2,N20,ty="l",col=3) 
lines(R2,N15,ty="l",col=5) 
lines(R2,N10,ty="l",col=8) 
lines(R2,N5,ty="l",col=6) 
legend(x=0.75,y=420,legend=c("25","20","15","10","5"),lty=c(1,1,1,1,1), 
       cex=0.6,col=c(4,3,5,8,6), title="K Variables") 
#################################END OF CODE ######################################## 

 
 
 
 

Table 1.  Sample size for multiple linear regressions formula with a range of R2 and number of 
variables; according to Cohen 1988 using R package pwr. 

R2 K=25 K=20 K=15 K=10 K=5 

0.05 453 414 370 317 249 
0.1 225 204 182 155 121 

0.15 149 135 119 101 78 
0.2 111 100 88 74 57 

0.25 89 79 69 58 44 
0.3 74 66 57 47 35 

0.35 63 56 48 40 29 
0.4 56 49 42 34 25 

0.45 50 43 37 30 21 
0.5 45 39 33 26 19 

0.55 41 36 30 24 16 
0.6 39 33 27 21 15 

0.65 36 31 25 19 13 
0.7 34 29 23 18 12 

0.75 32 27 22 17 11 
0.8 31 26 21 15 10 

0.85 30 25 20 14 9 
0.9 29 24 19 14 8 

0.95 28 23 18 13 8 

 



9 
 
 

Figure 1.  Sample size for multiple linear regressions according to Cohen 1988 formula 
for a range of R2 and number of variables using R. 

 

 
 

Table 1 shows that sample size has a wide range according to the assumptions. The larger the number of 

variables in the regression the larger the required sample size, the within correlation plays an important 

role where lower R2  requires larger sample size, in other wards;  if the variable set is independent, 

larger sample size is required. For 10 variables with R2=0.1 the required sample size is N=155, while for 

R2=0.8 the required sample size considerably decreases to N=15. 

One important comment, that the example calculations presented above assumes that all covariates are 

continuous and linearly associated with the dependent variable; and thus each variable is contributing 1 

degree of freedom in the regression. Should categorical variable included in the regression, larger 

sample size will be required. 

Using only power analytic point in of viewfor selecting appropriate sample size , in epidemiological 

setting, hosts many difficulties because the focus is at (1)  the statistical power of a model rather than 

the effect size accuracy (as defined by confidence interval) and also (2) no account for the further 

completion due to interactions2. 

Keley et al16 argued that sample size for multiple regression can be approached from at least four 

different perspectives: (a) power for the overall fit of the model, (b) power for a specific predictor, (c) 
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precision of the estimate for the overall fit of the model, and (d) precision of the estimate for a specific 

predictor. The goal of the first perspective is to estimate the necessary sample size such that the null 

hypothesis of the population multiple correlation coefficient equaling zero can be correctly rejected 

with some specified probability (e.g., Cohen14, 1988, chapter 13  and others17,18). 

B requires that sample size is computed for the power to test a specific predictor rather than the desired 

power for the test of the overall goodness of fit for the model14,19. 

A serious problem in regression is the uncertainty regarding the degree of interdependence in the 

multivariate model  which can influence effect size and sample size conciderably20 

Kellye16  in his paper encourage researchers to think about effect size measures in multiple regression 

analysis  and presents guidelines for appropriate sample size in multiple regression considering  the 

accuracy in parameter estimation (AIPE) along with power. He argues that the necessary sample size 

should let the confidence interval around a regression coefficient be reasonably narrow. This is to avoid 

confidence intervals beeing computed at the conclusion of a study, and only then to realized that the 

sample size used was too small to yield precise estimates. The AIPE approach to sample size planning 

allows researchers to plan necessary sample size, a priori, such that the computed confidence interval is 

likely to be as narrow as specified.  

Simulation analysis offers an additional approach for sample size evaluation, however, it is not feasible 

when  prior  knowledge regarding the final set of variables included in the model is absent.   Some 

authors have presented simulation studies which may be useful in a sensitivity analysis of targeted 

hypothesis regarding moderating effects or interaction terms in multiple regression9,21. 

 

2. Sample Size Considerations For Multiple Logistic Regressions: 

In multiple logistic regression the set of explanatory variables are regressed on a single binary outcome 

variable represented by the following formula: 

, 

where y i is the binary outcome variable and x1i,x2 i …xk i are the k explanatory variables which may be 

categorical or continues, not necessarily from a known distribution.  i represents the index of the ith 

individual  out of a sample size of N cases.    is the outcome variable and it is assumed that the 

expectation of the outcome variable given the all explanatory variables is normally distributed such that: 
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The key source to size studies with logistic regression is the paper by Hsieh 198922.  The paper presents 

sample size tables for epidemiologic studies which extend the use of Whittemore’s formula23. The tables 

are easy to use for both simple and multiple logistic regressions. Monte Carlo simulations are performed 

which show three important results. Firstly, the sample size tables are suitable for studies with either 

high or low event proportions. Secondly, although the tables can be inaccurate for risk factors having 

double exponential distributions, they are reasonably adequate for normal distributions and exponential 

distributions. Finally, the power of a study varies both with the number of events.  

 

No R code to obtain sample size for logistic regression according to Whittemore’s formula23  was found 

to date which follows the formulas in the appendix of Hsieh 198922. Therefore dedicated R function  

NLR() following was developed to obtain power and sample size in logistic regression. 

NLR depends on Event Frequency (P), Odds Ratio and Correlation ρ of  the exposure X with the other 

explanatory variables X2,…,Xk.   In this formulation it is not required to speciy the number of covariates, 

and this information is only accounted by the correlation parameter ρ. 

 

Code 2.  Sample size for multiple logistic regressions  

################################################################### 
# 2. Sample Size and Power analysis Multiple logistic regression 
Regression 
# HSIEH 1989. SAMPLE SIZE TABLES FOR LOGISTIC REGRESSION 
# For multiple logistic regression for one binary outcome 
# predicted by continues exposure X and K covariates. 
# the correlation of the K covariates with X is given by roh 
#################### ############################################### 
setwd("~/100BGU/Reading") 
 
#Set NLR function to obtain N of multiple logistic regression  
#with X1 and covariates X2-Xk 
#NLR parameters are:  
#alpha=0.05, beta=0.80 - significance level and power 
#Roh=0 multiple correlation of X1 with X2..XK 
#OR=1.5 is the expected OR for 1 SD in X1 (X1 has normal 
distribution) 
# P is the average frequency of events P=0.5 in the defalt 
NLR <- function(alphaw=0.05,Powerw=0.80,Roh=0,OR=1.5,P=0.5){ 
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  theta<-log(OR)     theta2<-theta^2 
  theta2m<- -1*theta2 
  Zalpha<-qnorm(1-alphaw) 
  Zbeta<- -1*qnorm(1-Powerw) 
 
    lam<-(1+(1+theta2)*exp(5*theta2/4)) * (1+exp(theta2m/4))^-1 
    n<-round(((Zalpha+exp(theta2m/4)*Zbeta)^2) * ( 
(1+2*P*lam)/(P*theta2) )) 
 
    NM<-round(n/(1-Roh^2)) 
  return(NM) 
  } 
 
NLR(alphaw=0.05,Powerw=0.80,Roh=0,OR=1.5,P=0.5) 
 
## Obtain sample size table for logistic regression  
#with Roh(0-1) OR=or P=p 
NLRtab<-function(p=0.5){ 
Roh<-seq(0,0.9,0.1) 
or1.1<-or1.5<-or2.0<-or2.5<-seq(1,10,1) 
for(i in 1:10){ 
  or1.1[i]<-NLR(alphaw=0.05,Powerw=0.80,Roh=Roh[i],OR=1.1,P=p)   
  or1.5[i]<-NLR(alphaw=0.05,Powerw=0.80,Roh=Roh[i],OR=1.5,P=p)   
  or2.0[i]<-NLR(alphaw=0.05,Powerw=0.80,Roh=Roh[i],OR=2.0,P=p)   
  or2.5[i]<-NLR(alphaw=0.05,Powerw=0.80,Roh=Roh[i],OR=2.5,P=p)   
} 
P<-rep(p,10) 
return(cbind(P,Roh,or1.1,or1.5,or2.0,or2.5)) 
} 
 
tab2<-
rbind(NLRtab(0.01),NLRtab(0.05),NLRtab(0.1),NLRtab(0.3),NLRtab(0.5)) 
tab2 
 
plotdatP1<-cbind( 
  rbind(NLRtab(0.05)[,c(1,2,3)] ,NLRtab(0.05)[,c(1,2,4)] ,  
        NLRtab(0.05)[,c(1,2,5)] ,NLRtab(0.05)[,c(1,2,6)] ) 
  ,rep(c(1.1,1.5,2.0,2.5),each=10)) 
plotdatP2<-cbind( 
                  rbind(NLRtab(0.1)[,c(1,2,3)] 
,NLRtab(0.1)[,c(1,2,4)] ,  
                        NLRtab(0.1)[,c(1,2,5)] 
,NLRtab(0.1)[,c(1,2,6)] ) 
                  ,rep(c(1.1,1.5,2.0,2.5),each=10)) 
plotdatP3<-cbind( 
  rbind(NLRtab(0.3)[,c(1,2,3)] ,NLRtab(0.3)[,c(1,2,4)] ,  
        NLRtab(0.3)[,c(1,2,5)] ,NLRtab(0.3)[,c(1,2,6)] ) 
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  ,rep(c(1.1,1.5,2.0,2.5),each=10)) 
plotdatP4<-cbind( 
  rbind(NLRtab(0.5)[,c(1,2,3)] ,NLRtab(0.5)[,c(1,2,4)] ,  
        NLRtab(0.5)[,c(1,2,5)] ,NLRtab(0.5)[,c(1,2,6)] ) 
  ,rep(c(1.1,1.5,2.0,2.5),each=10)) 
 
colnames(plotdatP1)<-colnames(plotdatP2)<-colnames(plotdatP3)<-
colnames(plotdatP4)<-c("P","Roh","N","OR") 
 
########### plot N for logisitc regression ########## 
 
pdat1<-as.data.frame(plotdatP1[11:40,]) 
pdat2<-as.data.frame(plotdatP2[11:40,]) 
pdat3<-as.data.frame(plotdatP3[11:40,]) 
pdat4<-as.data.frame(plotdatP4[11:40,]) 
 
par(mfrow=c(2,2),cex=0.6, mar=c(4,4,3,1)) 
interaction.plot(pdat1$Roh,as.factor(pdat1$OR), 
                 pdat1$N,main="Event Rate P=0.05", cex.main=0.9, 
                 xlab="",ylab="N",col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE ,xaxt="n") 
 
interaction.plot(pdat2$Roh,as.factor(pdat2$OR), 
                 pdat2$N,main="Event Rate P=0.1", cex.main=0.8, 
                 
xlab="",ylab="",cex.ylab=0.8,col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE,xaxt="n") 
 
interaction.plot(pdat3$Roh,as.factor(pdat3$OR), 
                 pdat3$N,main="Event Rate P=0.3", 
cex.main=0.8,cex.xlab=0.5, 
                 xlab="Covariates 
RSQ",ylab="N",cex.ylab=0.6,col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE) 
 
interaction.plot(pdat4$Roh,as.factor(pdat4$OR), 
                 pdat4$N,main="Event Rate P=0.5", 
cex.main=0.8,cex.xlab=0.5, 
                 xlab="Covariates RSQ",ylab="",cex.ylab=0.8, 
                 col=c(1,1,1),lty=c(1,2,3), legend=FALSE) 
legend(x=1.5,y=800,legend=c("1.5","2.0","2.5"),lty=c(1,2,3), 
       cex=0.8,col=c(1,1,1), title="OR") 
##################### END OF CODE ############################ 
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Using the developed R function NLR() sample size for logistic regression was calculated for event rate (P) 

between 0.01-0.5, OR=1.1-2.5 and for a given multiple correlation (Roh), see table 2. 

 On the contrary to the linear regression, it appears that as the multiple correlation increase a larger 

sample size is required. For example; for OR=1.5 and P=0.3 if ρ=0 the required sample size is N=213, but 

if ρ=0.5 the sample size increases to N=284. And in the case that ρ=0.9, the required sample size N=1121 

cases.  The case of ρ=0 is essentially the single logistic regression with no cofactors in the model.  In 

addition table 2 shows that  smaller effect size indicated by smaller OR, requires larger sample size, also 

shown on figure 2 and this is parallel to the trend showed for linear regression above. 

 

 
Table 2.  Sample size for multiple logistic regressions with a range of event rate P, multiple 
correlation R2 and odds ratios OR values for customary α=0.05 and 1-β=0.8. 

Roh OR=1.1 OR=1.5 OR=2.0 R=2.5   Roh OR=1.1 OR=1.5 OR=2.0 R=2.5 

P=0.01  P=0.1 

0 69330 3750 1237 690  0 8170 457 166 109 

0.1 70030 3788 1249 697  0.1 8253 462 168 110 

0.2 72219 3906 1289 719  0.2 8510 476 173 114 

0.3 76187 4121 1359 758  0.3 8978 502 182 120 

0.4 82536 4464 1473 821  0.4 9726 544 198 130 

0.5 92440 5000 1649 920  0.5 10893 609 221 145 

0.6 108328 5859 1933 1078  0.6 12766 714 259 170 

0.7 135941 7353 2425 1353  0.7 16020 896 325 214 

0.8 192583 10417 3436 1917  0.8 22694 1269 461 303 

0.9 364895 19737 6511 3632  0.9 43000 2405 874 574 

P=0.05  P=0.3 

0 14966 823 285 174  0 3640 213 86 66 

0.1 15117 831 288 176  0.1 3677 215 87 67 

0.2 15590 857 297 181  0.2 3792 222 90 69 

0.3 16446 904 313 191  0.3 4000 234 95 73 

0.4 17817 980 339 207  0.4 4333 254 102 79 

0.5 19955 1097 380 232  0.5 4853 284 115 88 

0.6 23384 1286 445 272  0.6 5688 333 134 103 

0.7 29345 1614 559 341  0.7 7137 418 169 129 

0.8 41572 2286 792 483  0.8 10111 592 239 183 

0.9 78768 4332 1500 916  0.9 19158 1121 453 347 

P=0.075  P=0.5 

0 10435 579 205 131  0 2734 164 70 57 
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Roh OR=1.1 OR=1.5 OR=2.0 R=2.5   Roh OR=1.1 OR=1.5 OR=2.0 R=2.5 

0.1 10540 585 207 132  0.1 2762 166 71 58 

0.2 10870 603 214 136  0.2 2848 171 73 59 

0.3 11467 636 225 144  0.3 3004 180 77 63 

0.4 12423 689 244 156  0.4 3255 195 83 68 

0.5 13913 772 273 175  0.5 3645 219 93 76 

0.6 16305 905 320 205  0.6 4272 256 109 89 

0.7 20461 1135 402 257  0.7 5361 322 137 112 

0.8 28986 1608 569 364  0.8 7594 456 194 158 

0.9 54921 3047 1079 689   0.9 14389 863 368 300 

*Using R package pwr  and according to Hsieh 1989.  
 
 

Figure 2.  Sample size for multiple logistic regressions for a range of covariates correlation R2, 
event rate P and Odds-ratios OR values. 
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The above code provides a useful and quick tool to obtain a sample size for multiple regression and to 

perform a brief sensitivity analysis. However, many have raised the concern that Hsieh 198924   formula 

does not account for the number of variables per event. Others  had concern that the formula also fails 

to account for multitude  of factors important for study design. For example Peduzzi et al. 199611 argue 

that it is not only the total sample size that matters but the number of variables per event (EPV)  also 

should be considered. He performs a simulation study of the number of events per variable in a logistic 

regression analysis based on a data from a cardiac trial of 673 patients in which 252 deaths occurred and 

seven variables as cogent predictor.  They found that for EPV values of 10 or greater, no major problems 

occurred. But for EPV less than 10,  the regression coefficients were biased in both positive and negative 

directions; the large sample variance estimates from the logistic model both overestimated and 

underestimated the sample variance of the regression coefficient with paradoxical associations i.e. 

significance in the wrong direction.   

 

In contrast, Vittinghoff et al 200712 have shown that in some circumstances, study design may relax the 

rule of ten events per variable in a logistic regression. They found a range of conditions, in which 

coverage and bias were within acceptable levels despite EPV being less than 10, as well as other factors 

that were influential in addition to EPV.  

 In a recent publication Courvoisier et al 201110 argue that there are much more beyond EPV. One 

should consider, e.g.  bias and precision beyond power alone. This is closely related to the role of data 

structure requiring a simulation of unique design for a given dataset. 

This leads to the approach shared by researchers recommending to conduct a resampling-simulation on 

a pilot study to derive sample size meeting precision, bias and EPV requirements. We next shall see, how 

this can be achieved in a cox regression setting. 

 

3. Sample Size considerations for Cox Regression 

Cox proportional hazards regression in the epidemiological studies follows the following formula:  

) ∙exp(  ), 

Where in this example   is a nonbinary explanatory variable  of interest  and  is a vector of other 

covariables.  E.g. the aim here is to assess a hazard ratio of =1  to =0 for a given significance level  

and 1-β power the n is the function  so that   n=f( ) ,  
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where  is proportion of deaths, estimated by P  and  exp( ) is hazard rate of X1 

and ρ2 is multiple correlation coefficient from a regression of   on the other covariates : 

 

and  ρ2 is estimated by R2. 

PowerSurvEpi25 is an R package which includes a set of functions to calculate power and sample size for 

testing a main or an interaction effect in the survival analysis of epidemiological studies (non-

randomized studies), taking into account the correlation between the covariate of interest and other 

covariates. Some functions also take into account the competing risks and stratified analysis.  

numDEpi - calculates Number of Deaths Required for Cox Proportional Hazards Regression with Two 

Covariates for Epidemiological Studies with binary variables of interest. numDEpi  follows Schoenfeld 

(1983)26 formulations and also allow for competing risk as presented by Latouche(2004)27.  

powerEpiInt and powerEpiInt2- provides further platform for the case of interaction between the two 

binary covariates according to Schmoor(2000)28 .   

ssize.stratify  should be used for stratified sample as  formulated by Palta (1985)29 . This also gives the 

sample size calculation for survival analysis with binary predictor and exponential survival function. 

ssizeEpiCont  is the most general  sample size procedure it allow the calculation of sample size for cox 

proportional hazard regression with continues predictors it follows Hsieh (2000)30 formulations  

 

For the epidemiologist working in a set of covariables ssizeEpiCount is most relevant because it is the 

most flexible to numerous parameters. 

The result of selecting several parameters and performing a sensitivity analysis on the other parameter 

does no longer holds in the cox regression. It is required to use a given pilot study to address the 

requirements of precision, bias, number of variables in the model, event rate, significance and power. 

This, typically, depends on the data structure and thus the sample size will be derived based on the 

given data-table of the pilot study.  

A small simulation study, describing  the required sample size for customary α and 1-β. In an artificial 

pilot study of n=100 from bivariate normal distribution with a correlation range between 0.01 - 0.9 for 

the two explanatory variables X1 and X2. The code, tables and graphs are given below:  
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Code 3.  Sample size for multiple Cox regression  

####################################################################
# 
# Sample Size and Power analysis  for Multiple cox Regression 
# According to Hsieh and Lavori (2000) 
####################################################################
# 
install.packages("powerSurvEpi") 
install.packages("MASS") 
library(powerSurvEpi) 
library(MASS) 
 
# simulate a pilot dataset size ns with correlation of roh between 
x1 and x2 
# X1 variable of interest, X2 variable to control value,  
# where X1,X2 comes from continues MVnorm 
 
NCOX<-function(npilot=25,P=0.1,r=0.6,HRs=1.5,seed=123456) { 
set.seed(seed) 
Sigma <- matrix(c(1,r,r,1),2,2) 
tmp<-mvrnorm(n=npilot, mu=rep(0, 2), Sigma,empirical=TRUE) 
X1<-tmp[,1] 
X2<-tmp[,2] 
failureFlag <- sample(c(0, 1), npilot, prob = c(1-P, P), replace = 
TRUE) 
dat <- data.frame(X1 = X1, X2 = X2, failureFlag = failureFlag) 
retN<-ssizeEpiCont(formula = X1 ~ X2, dat = dat, X1 = X1, 
failureFlag = failureFlag,  
             power = 0.80, theta = HRs, alpha = 0.05)$n 
return(retN)  
} 
              
NCOX(npilot=10,P=0.3,r=0.5,HRs=1.5) 
 
## Obtain sample size table for COX regression  
#with Roh(0-1) HR=HR P=p 
NCOXtab<-function(p=0.075){ 
  Roh<-seq(0,0.9,0.1) 
  HR1.1<-HR1.5<-HR2.0<-HR2.5<-seq(1,10,1) 
  for(i in 1:10){ 
    HR1.1[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=1.1)               
    HR1.5[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=1.5) 
    HR2.0[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=2.0) 
    HR2.5[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=2.5) 
  } 
  P<-rep(p,10) 
  return(cbind(P,Roh,HR1.1,HR1.5,HR2.0,HR2.5)) 
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} 
 
tab3a<-rbind(NCOXtab(0.01),NCOXtab(0.05),NCOXtab(0.075)) 
tab3a 
 
tab3b<-rbind(NCOXtab(0.1),NCOXtab(0.3),NCOXtab(0.5)) 
tab3b 
 
 
#### data for plot 
NCOXdat<-function(p=0.075){ 
  Roh<-seq(0,0.9,0.1) 
  HR1.5<-HR2.0<-HR2.5<-seq(1,10,1) 
  for(i in 1:10){ 
    HR1.5[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=1.5) 
    HR2.0[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=2.0) 
    HR2.5[i] <- NCOX(npilot=100,P=p,r=Roh[i],HRs=2.5) 
  } 
    ret <- rbind(cbind(P=rep(p,10),Roh,N=HR1.5, 
HR=rep(1.5,10)), 
                 cbind(P=rep(p,10),Roh,N=HR2.0, 
HR=rep(2.0,10)), 
                 cbind(P=rep(p,10),Roh,N=HR2.5, 
HR=rep(2.5,10)) ) 
return(ret) 
} 
plotdatP1<-NCOXdat(p=0.05) 
plotdatP2<-NCOXdat(p=0.1) 
plotdatP3<-NCOXdat(p=0.3) 
plotdatP4<-NCOXdat(p=0.5) 
 
pdat1<-as.data.frame(plotdatP1) 
pdat2<-as.data.frame(plotdatP2) 
pdat3<-as.data.frame(plotdatP3) 
pdat4<-as.data.frame(plotdatP4) 
 
########### plot N for Cox regression ########## 
 
par(mfrow=c(2,2),cex=0.6, mar=c(4,4,3,1)) 
 
interaction.plot(pdat1$Roh,as.factor(pdat1$HR), 
                 pdat1$N,main="Event Rate P=0.05", 
cex.main=0.9, 
                 xlab="",ylab="N",col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE ,xaxt="n") 
 
interaction.plot(pdat2$Roh,as.factor(pdat2$HR), 
                 pdat2$N,main="Event Rate P=0.1", 



20 
 
 

cex.main=0.8, 
                 xlab="",ylab="",col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE,xaxt="n") 
 
interaction.plot(pdat3$Roh,as.factor(pdat3$HR), 

                 pdat3$N,main="Event Rate P=0.3", cex.main=0.8, 
                 xlab="Covariates 
RSQ",ylab="N",col=c(1,1,1),lty=c(1,2,3), 
                 legend=FALSE) 
 
interaction.plot(pdat4$Roh,as.factor(pdat4$HR), 
                 pdat4$N,main="Event Rate P=0.5", cex.main=0.8, 
                 xlab="Covariates RSQ",ylab="", 
                 col=c(1,1,1),lty=c(1,2,3), legend=FALSE) 
legend(x=2,y=400,legend=c("1.5","2.0","2.5"),lty=c(1,2,3), 
       cex=0.7,col=c(1,1,1), title="HR") 
 
 
 
#sensitivity to npilot size- table4 
 
n.pilot<-seq(7,500,by=5) 
n.estimated<-rep(1,length(n.pilot))  
 
for(i in 1:length(n.pilot)){ 
  n.estimated[i]<-
NCOX(npilot=n.pilot[i],P=0.3,r=0.5,HRs=1.5,seed=12)} 
 
hm<-mean(n.estimated) 
plot(n.estimated~n.pilot,ylim=c(50,500),pch=20,cex=0.8) 
abline(h=hm) 
segments(n.pilot,rep(hm,length(n.pilot)),x1=n.pilot,y1=n.estimated) 
################################# End of CODE #################### 

 



21 
 
 

 
Table 3.  Sample size for Cox regressions with a range of R2 and Hazard Ratios, event rate P 
for the customary α=0.05 and 1-β=0.8 

Roh HR=1.1 HR=1.5 HR=2.0 HR=2.5   Roh HR=1.1 HR=1.5 HR=2.0 HR=2.5 

P=0.01  P=0.1 

0 43202 2388 817 468  0 9601 531 182 104 

0.1 43638 2412 826 473  0.1 9698 536 184 105 

0.2 45002 2487 851 487  0.2 10001 553 190 109 

0.3 47475 2624 898 514  0.3 10550 583 200 115 

0.4 51431 2842 973 557  0.4 11429 632 217 124 

0.5 57603 3183 1090 624  0.5 12801 708 243 139 

0.6 67503 3730 1277 731  0.6 15001 829 284 163 

0.7 84709 4681 1602 917  0.7 18825 1041 356 204 

0.8 120005 6631 2269 1299  0.8 26668 1474 505 289 

0.9 227377 12564 4300 2461  0.9 50529 2792 956 547 

P=0.05  P=0.3 

0 17281 955 327 187  0 3201 177 61 35 

0.1 17456 965 331 189  0.1 3233 179 62 35 

0.2 18001 995 341 195  0.2 3334 185 64 37 

0.3 18990 1050 360 206  0.3 3517 195 67 39 

0.4 20573 1137 389 223  0.4 3810 211 73 42 

0.5 23041 1274 436 250  0.5 4267 236 81 47 

0.6 27001 1492 511 293  0.6 5001 277 95 55 

0.7 33884 1873 641 367  0.7 6275 347 119 68 

0.8 48002 2653 908 520  0.8 8890 492 169 97 

0.9 90951 5026 1720 985  0.9 16843 931 319 183 

P=0.075  P=0.5 

0 12344 683 234 134  A 1695 94 33 19 

0.1 12468 689 236 135  0.1 1712 95 33 19 

0.2 12858 711 244 140  0.2 1765 98 34 20 

0.3 13565 750 257 147  0.3 1862 103 36 21 

0.4 14695 812 278 159  0.4 2017 112 39 22 

0.5 16458 910 312 179  0.5 2259 125 43 25 

0.6 19287 1066 365 209  0.6 2648 147 51 29 

0.7 24203 1338 458 262  0.7 3322 184 63 36 

0.8 34287 1895 649 371  0.8 4707 261 89 51 

0.9 64965 3590 1229 703   0.9 8917 493 169 97 

• Using ssizeEpiCont  function from powerSurvEpi Rpackage with a simulated multivariate normal pilot 
sample of size 100. According to Hsieh and Lavori (2000) implemented with 2- sided alpha. 
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Figure 3 Sample size for Cox regressions with a range of R2 and Hazard Ratios, event rate P 
with customary α=0.05 and 1-β=0.8  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Footnote: from-  ssizeEpiCont  function from powerSurvEpi R package with a simulated multivariate 
normal pilot sample of size 100. According to Hsieh and Lavori (2000) implemented with 2- sided 
alpha. 

 
 
 
 

Similarly to the logistic regression results, in the cox regression - it appears that as the variable 

correlation is increasing, larger sample size is required. For example; a HR=1.5 and P=0.3 if ρ=0 the 

required sample size is N=177  but if ρ=0.5 the N is increase to N=236. In the case that ρ=0.9 the 

requires sample size is of N=931.  The case of ρ=0 is actually the single hazard regression with no 

cofactors in the model.  In addition table 2 shows that smaller effect size indicated by smaller HR, 
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requires larger sample size, also shown on figure 2. It appears that in these cases the required sample 

size for HR is comparable to the size generated by the formula for logistic regression, essentially 

replicating the trends with respect to the correlation ρ2 and event rates P.   

 

 

In  a sepate simulation we have noted that the sample size estimates is converging as the number of 

pilot size ( n-pilot) is increasing. For illustration see figure 4 wee see that a pilot of size n will converge 

for the rtifitial by-variate normal covariates in a cox regression.  

On one hand this results are reassuring, because sample size estimates are shown to be consistent with 

larger pilot size. However, on the other hand the convergence occurs with a considerably large pilot size 

of about 100 cases. Such large pilot can be feasible with artificial simulated pilot data, but can be of a 

unreasonable burden in field studies. 

 

 

Figure 4. Estimated sample size as function of pilot sample size  for Cox regression with  
 two explanatory variables from binormal distribution, α=0.05 and 1-β=0.8 HR=1.5 P=0.3 and 
Roh=0.5. 
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Discussion 

This article reviewed methods for calculating sample size in multiple regressions frame works including: 

linear, logistics and Cox proportional hazard regression. 

The results presented by many authors and replicated here show that in the multi-dimensional-studies 

as in epidemiology, the design is impacted by many factors that can influence sample size 

determination. Therefore, no single factor is deemed superior and sensitivity analyses should be 

conducted in this process. 

Impact of R2 on  sample size N was  examined in this essay in Linear, logistics and Cox regressions.  

The results were conflicting; for linear regression- increasing R2 leads to smaller N, while for logistics and 

Cox regression opposite results were found, increasing R2 leads to increase in N. Two possible 

explanations to this unexpected results: I)  Cohen(1988)14 formula was used to derive sample size which 

do not accounts for the possible effect size reduction in the present of other covariates and II) The mean 

and variance of the outcome are dependent for event rate such as in logistics/cox regression but are 

assumed independent  for normal outcome variable such as in the linera regression. This dependency 

forces the sample size estimates (N) to follow the correlation in logistics/cox regression but are not 

bounded in the linear regression. 

 

Rules-of-thumb have been suggested for determining the minimal number of subjects required to 

conduct multiple regression analyses. Despite the development of procedures for calculating sample 

size as a function of relevant effect size parameters, rules of thumb tend to persist in designs of multiple 

regressions studies common in epidemiology. One explanation for their common usage may be the 

difficulty in formulating a reasonable a priori value of an effect size to be detected. The example we 

have conducted above provides an explanation of why rules of thumb for choosing sample size have 

been used and also shows that the outcome of it may results in too large (or too small) sample size,  also 

showed by others for example see Maxwell19. 

These rules-of-thumb are evaluated by comparing their results against those based on power analyses 

for tests of hypotheses of multiple and partial correlations.  Green18 have argued that the exact power 

analysis simulations did not support the use of rules-of-thumb that simply specify some constant (e.g., 

100 subjects) as the minimum number of subjects or a minimum ratio of number of subjects (N) to 
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number of predictors (k). 

 

Not only power ought to be factor in sample size considerations. Other authors16 have raised concern 

regarding the effect size particularly in interaction terms and in term of   accuracy of parameters 

confidence interval coverage. Failing to account for the accuracy of effect size may result in biased 

estimates and incorrect inference. This bias is of particular concern when many explanatory variables 

appears in the regression.  In contrast, within a cox regression simulations performed by Hsieh 200030 , 

the censored observations did not contribute to the power of the test of the proportional hazards. This 

paper also provides a variance inflation factor together with simulations for adjustment of sample size 

when additional covariates are included in the model. Courvoisier et al 201110  provide simulation 

results for four important issues to account in the study design see the figure below.  

 Figure 5.  Example of simulations for (a) Percentage of nonconverged replications, (b) Median 
relative bias of the estimate, (c) Percentage of cover and (d) Percentage of significant 
coefficients  plotted against the number of events per variable (EPV) in a logistics regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Taken from Courvoisier et al10  (2011) to illustrate sensitivity analysis to several parameters 

 

This sensitivity analysis shows large variation with respect to the assumptions and thus it supports the 
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necessity of using methods to determine sample size that incorporate multitude of considerations.  

 

Variable selection problem is one of the most general model selections. Often referred to as the 

problem of subset selection, it arises when one wants to model the relationship between a variable of 

interest and a subset of potential explanatory variables or predictors, but there is uncertainty about 

which subset to use.   In large epidemiological data sets with many variables the issue is not only pf how 

many variables to include in a model but also which variable to include in the model. Nevertheless this is 

not the focus of this essay and for a review of the key developments which have led to the wide variety 

of approaches to select variables to the model sees George 200031 and also an introductory updated 

tutorial is given by  Cassotti & Grisoni32. This issue is  relevant for “fishing expedition” more common in 

the machine learning settings. 

 

Generalized Linear Models(GzLM) Sample Sizing – The issue of sample size in multi-variable setting 

may be extended to the GzLM  framework and thus generalized to include also the case of count or 

categorical outcome, beyond the normal, binary or time to event presented here. This can also be 

further generalized for the cluster data setting. In such setting, the close-form formula can fail in 

determining a sample size due to ignorance of within covariance structure.  Method similar to that 

presented in this essay for Cox regression should be applied. By using data from a pilot study to establish 

the required data structure and asses by simulation number of sample-size considerations, including: 

power, coverage, mediation, goodness of fit, number of events per variable etc.  This is currently an 

active area of research and people have approached it from different angles. For example, Moineddin et 

al33   provided a simulation to assess the effect of a varying sample size, at both the individual and group 

levels, on the accuracy of the estimates of the parameters and variance components of multilevel 

logistic regression models. In addition, the influence of prevalence of the outcome and the intra-class 

correlation coefficient (ICC) is examined. Their result indicated that the estimates of the fixed effect 

parameters are unbiased for 100 cluster with size of 50 or higher. The estimates of the covariance 

components may be biased even with this large size. However, the random effect is baised only when 

cluster size below 5.  

Qianyu 34  gives sample size and power calculations for GLIMMIX which are affected by prior information 

about random effects, within-subject correlations. The SAS program resample from a pilot data in order 

to compute  addequate sample sizes for correlated binary outcomes. 
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Bayesian, Resampling, and MCMC are becoming the method of choice for obtaining a sample size in 

an epidemiological study35,36 . R programs has strong capabilities in all three aspects and therefore can 

provide a useful platform for developing  the desired study plan and sample size. 

Summary and Concluding Remarks 

We have provided a review of different approaches for sample size calculations and power analysis in 

the multiple-variables setting shared by many epidemiological studies. During the 80th and 90th of the 

previous century methods were developed using a single formula. Those were in turn simulated over a 

range of conditions and bunch of rule-of-thumbs were developed. It appears that none of these rules 

really covers all important issues required for sample size estimation: i.e.  power, bias, coverage, 

moderation and goodness of fit. This multitude of issues highly depends on data structure and only can 

be fully assesed in simulation studies.  During the last decade more and more studies have been 

designed based on Bayesian approach, i.e. MCMC and resampling methods to better address the factors 

impacting the sample size.  The availability of software like R with a set of flexible tools enables more 

researchers to plan multi-variable and multi-level  complex epidemiological studies.  
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